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Abstract

In the context of wave propagation in damaged (elastic) solids, we develop an analytical approach for normal
penetration of a plane wave through a two-dimensional array of cracks. Differently from our previous papers, the
cracks’ lines are not equally spaced along the direction of propagation (the cracks being periodically distributed only in
the orthogonal direction). The linear system analytically obtained by means of a uniform approximation for one-mode
range, is submitted to a standard method for numerical resolution. Reflecting the physical intuition, the transmission
coefficient turns out to be (almost monotonically) decreasing with distance through the structure. © 2001 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

In a foregoing paper (Scarpetta and Sumbatyan, 1997), we studied wave propagation in damaged elastic
solids from a fully analytical point of view. By using a uniform approximation in one-mode range previ-
ously obtained (Scarpetta and Sumbatyan, 1995), we derived explicit analytical results for all relevant
parameters connected with normal penetration of a plane wave through an elastic continuum with a reg-
ular, doubly periodic, distribution of cracks. Several numerical tests were also performed to estimate the
validity of the main assumptions and approximations. In that paper, we noted that such well-organized
structures exhibit specific properties with respect to wave propagation: for relatively small frequencies,
both the transmission and reflection coefficients are periodic, both with respect to the distance along the
structure and to the frequency itself. However, more consistently with the wave attenuation which is ac-
tually observed in experiments, for increasing frequencies (above certain critical values depending on the
geometrical parameters), the transmission coefficient turns out to decay rapidly (exponentially) with respect
to the two parameters above. The periodic properties described in Scarpetta and Sumbatyan (1997) seem to
be closely connected with the regularity of the flaws distribution, more precisely with the assumption of an
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Fig. 1. Plane wave propagation through a semi-periodic array of cracks.

equal distance between the arrays of co-planar cracks (Scarpetta and Sumbatyan, 1997, (Fig. 1)). In this
paper, we intend to generalize the previous context, in order to cover the case of different distances; un-
fortunately, we will not reach fully analytical results as in that paper, but nevertheless we will go deep into a
numerical analysis and resolution of the main governing equations. The results will appear to confirm what
is well-known from the literature on the subject, namely, the fall of transmission at any frequency when the
latticed structure loses certain geometrical regularities. In this connection, the paper of Castanier and Pierre
(1995) can be usefully referred to (along with the references therein cited) for a thorough discussion both on
the phenomenological aspects of the matter and on the other, (different from ours) numerical/analytical
methods of approach. A brief survey of the papers devoted to the study of full-randomly cracked solids can
be found in Zhang and Gross (1993); for the same item regarding the regularly (periodically) cracked ones,
(Scarpetta and Sumbatyan, 1997) and the references therein cited.

For convenience, we only consider the anti-plane propagation problem in (two-dimensional) elastic
context; however, the results can as well apply to similar problems in acoustics and in electromagnetism,
according to the interpretation of the wave field in concern.

2. Mathematical formulation

We consider an unbounded elastic medium in which there is a semi-periodic distribution of flaws (Fig. 1):
this consists of an arbitrary number M( > 2) of identical (vertical) planes, each of them containing an
infinite periodic array of co-planar cracks. The period of a vertical array is 2a, and the opening between two
neighbouring cracks is 2b (around |y| = 0,2a,4a,...).

By contrast with Scarpetta and Sumbatyan (1997), the distances between the cracked planes are sup-
posed to be different from each other: we denote them by d;, i = 1,...,M — 1, so that the locations of the
planes now become x; = 0 and x,, = Z;”:]] d,m=2,...,M.

In this context, the anti-plane problem for normal penetration of a harmonic plane wave means that an
incident (z-polarized) wave of the form expli(kx — wt)] is entering from —oo into the structure, giving rise
throughout to a diffracted (stationary) wave field ¢(x,y) that satisfies the Helmholtz equation

(0 +0,) 0 + kKo =0, (2.1)

for a given wave number k = w/c (c is the transverse wave speed of the material in concern).

By virtue of the natural symmetry and periodicity, we can restrict the problem to a single layer |y| < a
with openings |y| < b; also, the following representations can be given for the wave field in the various
regions:
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@, =" + Re 7" 4 ZA,,e"”" cos(mny/a), x <0, (2.2a)

n=1
®,, = By cos [k(x — x,,)] + C cos [k(x — X11)]

+ i@: {B'ch[g,(x — x)] + C'ch[g,(x — x,s1)]} cos(mny/a), (2.2b)

n=1

X <X < Xpyy, m=1,... . M—1,

@, = Tek—m) 4 ZD,,e‘q”(""“”) cos(mny/a), x> xy, (2.2¢)

n=1

where all capital letters denote unknown constants, ch (or sh)-hyperbolic cosine (or sine), and

gn =/ (mn/a)’ — k>, n=12,... (2.3)

Like in Scarpetta and Sumbatyan (1997), we accept the following two main assumptions:

(a) Only one-mode propagation is considered, namely 0 < ka < m, so that ¢, > 0 Vn, and at large dis-
tances from the structure only plane waves with the given wave number k are present.

(b) The vertical cracked planes are sufficiently distant from each other, so that all ratios d,/a,
m=1,...,M — 1, are comparatively large. In practice, it is sufficient for them to be greater enough than a
unit value ((Scarpetta and Sumbatyan, 1997) Section 4).

In view of assumption (a), constants R and 7 in Egs. (2.2a) and (2.2¢) can be fully interpreted as re-
flection and transmission coefficients, respectively.

The cracks’ faces cannot sustain tangential stress, which is proportional to d¢/0x; so, as a natural

boundary condition, we can put 0¢/0x = 0 for b < |y| < aand x = xy,...,xy. Assuming also the continuity
of ¢ /0x through the openings, i.e. for |y| < b and x = xy,...,x), we can introduce some new unknown
functions g (), . .., gu(y), physically related to the stress components along the openings, as follows:

9o; _ [&(), Iyl <b, _Op

ax{o, b<|y|<a —E, X—XI—O, (243)

00, _ (), [yl <D, _ 09, _ _

F_{0’ h<pl<al™ ox’ xX=x, (m=2,...,M—1), (2.4b)

a(/)M—l _ gM(y)v |y| < b7 _a(/)r —

> 0, helpl<al™ ax’ X = Xy. (2.4¢)

The geometrical symmetry implies of course that all these functions be even. By integration of equations
above, over |y| < a, we easily get

1 b
(1~ R) = 5 / a1 (1)dt = kC) sin(kd ), (2.52)
a J-»
1 b
KCy sin(kd,) = - / g (dt = —kBIVsin(kdy 1) (m=2,..., M —1), (2.5b)
b

1 b
T = 3 / gy (t)dt = —kBY ' sin(kdy ). (2.5¢)
a.J-p
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Repeating the integration after multiplying by cos(nn'y/a),n’ = 1,2,3,..., gives (by orthogonality of co-
sines)

1 b
4y =+ / a1(1) cos(rnt Ja)dt = —Clg, sh(qudr), (2.6a)
—b
1 [ nnt 1
—q,C sh(q,d,) = — gn(t)cos—dt = ¢,B" ' sh(g,dn—1) (m=2,....M—1), (2.6b)
a J_p a
1 b
—q,D, =~ / gu(t) cos(mnt/a)dt = B 'q, sh(g,dy_1)- (2.6¢)
a J_
Now, the continuity assumption for the wave fields through the openings: ¢, = ¢, atx = x1, ¢,,_; = ¢,

atx=x, m=2,...,M —1), ¢,_; = @, at x = xy, for |y| < b, implies the following equalities:

1+R+ ZA,, cos(nny/a) = By + C, cos(kdy) + Z (B} + Cich(q,d,)] cos(nny/a), (2.7a)

n=1 n=1

By + Cy' cos(kd,,) + Z [B + Crch(g,d,,)] cos(nny/a)

n=

1
= B} cos(kd,_,) + CI 1+Z (B 'ch(gud, 1) + C | cos(nny/a) (m=2,....M —1), (2.7b)

BY ' cos(kdy 1) + CY' + Z [BY~'ch(gudy—1) + C)' '] cos(mny/a)

n=1

=T+ ZD,, cos(mny/a). (2.7¢)

By the main assumptions (a) and (b), we can put ¢,d,, = mnd,, /a > 1, so that sh(q,d,,) =~ ch(g,d,) > 1 in

Eqgs. (2.6) and (2.7): this enables us to neglect terms B” or C” with respect to terms C”ch(g,d,) or

B’ch(g,d,) (m=1,...,M — 1) in the square brackets of Eqs. (2.7) ((Scarpetta and Sumbatyan, 1997)

Section 2). By this approximation, inserting the values of all constants, taken from Egs. (2.5) and (2.6), into

Egs. (2.7a)—(2.7¢c), gives finally rise to the following square system of integral equations for the unknowns
g1,-..,8u over the interval |y| < b (ctg = cos/sin):

1 /? 1 ctglkd)) <1 mn(y—1) 1 b
z L I - dr =1 2.8
a /, &0 [4%+ 4 ; 2 O Y daksinGkar) /, &(di=1, (2.82)
1 [ ctg(kd,) + ctg(kd, 1) =1  nmn(y—1) 1 b
—_ m l‘ —_— —_— —_— dti . m td
a/,bg ()[ 4k ;qn €08 a 4ak sin(kd,,) /,bg (n)dr
1 b
- 1 (£)dE =0 =2,....M—1), 2.8b
s JR0 (m ) (2.8b)

! ’ L 1 ctglkdy— = 1 mn(y —t)
_m/bng(t)dt+5/gM(>[4lk+T D s |d =0 (28¢)
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If the new (even) unknown function %(y) is introduced, like in Scarpetta and Sumbatyan (1995, 1997), as
a solution of the following equation

1 /b =1 nn(y —t)
- h(t —cos———= [dr =1, < b, 2.9
2/ <>[;qn ; B (29)
then, by linearity, we arrive at
ctg(kd)) —i G,
= — -1 2.1
a0 = | HGH =6 - 1o (2,102
Ctg(kdm) + Ctg(kdmfl) Gmfl Gm+l
() = S S h =2 M—1),
&n(v) { dak COn = Zaksin(kd,) ~ daksin(kay) | 0 )
(2.10b)
Gy_i Ctg(de,l) —1
= | - 2.1
2u) = |~ garsry S = o), (2.100)
where we have put
b
Gm:/ gn()dt, m=1,...,M. (2.11)
-b
Put also H = |7, i h(t)de. Integration of Egs. (2.10a)—(2.10c) over |y| < b finally yields the following square
system of linear algebralc equations for the unknowns Gy, ..., Gy:
ctg(kd,) — i H
l1-————H —— G, =—-H 2.12
( dak G T Faksin(ka) ’ (2.122)
H ctg(kd,,) + ctg(kd,_1) H B B
4ak sin(kdy_, ) G- <1 dak H)Gn+ faksin (kd,,) Oni1 =0, (m=2,....M—1),
(2.12b)
H Ctg(de 1)
) | clglkay—1) — 1 - 2.12
daksin (kdy ) M1 T < dak )GM 0. (2.12¢)

As clearly explained in Scarpetta and Sumbatyan (1995, 1997), the function A(y) can be explicitly cal-
culated from Eq. (2.9) by means of a uniform one-mode approximation (g, ~ mn/a for n > 2). For its
integral, we got in those papers

{n/In[sin(nb/2a)]}[1 - (1 — n/aq,) sin*(nb/2a)]

- — . : (2.13)
1 — (1 — n/aq,){sin*(nb/2a) — cos*(nb/2a)/ In [sin(nb/2a)] }

so that constant H in system (2.12) is actually a known quantity.

3. Numerical simulation and conclusions

If all distances d,, are equal to each other (d,, = d, Vm: “well-organized” structure), then the system
(2.12) can be resolved explicitly (Scarpetta and Sumbatyan, 1997). In that case, for not too high frequencies,
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Fig. 2. Transmission coefficient |7| versus number of arrays M for a random distribution of d,,/a, m = 1,...,M — 1, on the interval
(1.0,6.0): b/a = 0.5 and ak = 0.5.

both the reflection and transmission coefficients are periodic functions with respect to the number M of
vertical arrays (representing the distance):

R'= <1 +IH){1 —e*cos o — sinactg(Ma)]},
2ak
iH sin o 2ak 3.1)
= Saksin(Ma)’ cosa = cos(kd) — 72 sin(kd).
This periodic property is not confirmed by experiments, which actually show a monotonic (typically, ex-
ponential) decrease of T with distance.

For arbitrary values of d,, the linear algebraic system (2.12) contains only three main diagonals, being
symmetric with respect to the main diagonal. So, a standard “sweep method” may be applied to solve this
system numerically (Malcolm and Palmer, 1974).

To achieve more realistic physical properties of the damaged medium, we performed a numerical
treatment of the system (2.12) for random values of d,,/a uniformly distributed over some interval (4,B).
The transmission coefficient, that is given by Eq. (2.5¢) as T = Gy, /2iak, turns out to vanish with parameter
M increasing, for arbitrary (fixed) values of all other physical and geometrical parameters. A typical case is
reflected in Fig. 2, where the values of d,,/a are randomly taken in the interval (1.0,6.0). The lower curve
just gives the respective values of d,,/a form=1,... M — 1.

Let us formulate the principal physical conclusions. As noted above, “well-organized” structures (where
the cracks create some quite regular geometric lattice) provide a periodic dependence of the transmission
coefficient with distance. Absolutely random damaged structures, which are those typically tested in ex-
periments, provide a monotonically (exponentially) vanishing transmission coefficient. As a consequence,
the geometry concerned in the present paper could be considered as a “‘semi-organized” structure, since the
transmission coefficient actually tends to zero with distance, but its decreasing does not appear strictly
monotonic.

! For instance, the nine random values of d,, /a when M = 10 are the ordinates of the nine corner-points (including the initial one) in
the lower curve before M = 10.
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